83,665 research outputs found

    Courant algebroids from categorified symplectic geometry

    Full text link
    In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed nondegenerate (n+1)-form. The case relevant to classical string theory is when n=2 and is called "2-plectic geometry". Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2-algebra of observables associated to any 2-plectic manifold. String theory, closed 3-forms and Lie 2-algebras also play important roles in the theory of Courant algebroids. Courant algebroids are vector bundles which generalize the structures found in tangent bundles and quadratic Lie algebras. It is known that a particular kind of Courant algebroid (called an exact Courant algebroid) naturally arises in string theory, and that such an algebroid is classified up to isomorphism by a closed 3-form on the base space, which then induces a Lie 2-algebra structure on the space of global sections. In this paper we begin to establish precise connections between 2-plectic manifolds and Courant algebroids. We prove that any manifold M equipped with a 2-plectic form omega gives an exact Courant algebroid E_omega over M with Severa class [omega], and we construct an embedding of the Lie 2-algebra of observables into the Lie 2-algebra of sections of E_omega. We then show that this embedding identifies the observables as particular infinitesimal symmetries of E_omega which preserve the 2-plectic structure on M.Comment: These preliminary results have been superseded by those given in arXiv:1009.297

    Effective Hamiltonians and dilution effects in kagome and related antiferromagnets

    Full text link
    What is the zero-temperature ordering pattern of a Heisenberg antiferromagnet with large spin length SS (and possibly small dilution), on the kagome lattice, or others built from corner-sharing triangles and tetrahedra? First, I summarize the uses of effective Hamiltonians to resolve the large ground-state degeneracy, leading to long-range order of the usual kind. Secondly, I discuss the effects of dilution, in particular to {\it non}-frustration of classical ground states, in that every simplex of spins is optimally satisfied. Of three explanations for this, the most complete is Moessner-Chalker constraint-counting. Quantum zero-point energy may compete with classical exchange energy in a diluted system, creating frustration and enabling a spin-glass state. I suggest that the regime of over 97% occupation is qualitatively different from the more strongly diluted regime.Comment: 11 pages; invited talk at "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy
    • …
    corecore